Related Publications

 

(1) J. Burns, E. Stulz, S. Howorka, Nano Lett. 2013, 13, 2351-2356.

(2) J. R. Burns, K. Göpfrich, J. W. Wood, V. V. Thacker, E. Stulz, U. F. Keyser, S. Howorka, Angew. Chem. Int. Ed. 2013, 52, 12069–12072.

(3) J. R. Burns, N. Al-Juffali, S. M. Janes, S. Howorka, Angew. Chem. Int. Ed. 2014, 53, 12466-12470.

(4) A. Seifert, K. Gopfrich, J. R. Burns, N. Fertig, U. F. Keyser, S. Howorka, ACS Nano 2015, 9, 1117-1126.

(5) S. Krishnan, F. C. Simmel, Nat. Chem. 2014, 7, 17-18.

DNA Nanopores

 

Nanopores are widespread in nature and facilitate the essential transport of water-soluble molecules across bilayers. Replicating this key property with engineered or de-novo pores is scientifically intriguing and additionally leads to powerful biomedical research tools and biosensor components. 

 

The Howorka group creates synthetic nanopores from self-assembled DNA carrying hydrophobic lipid anchors to insert the otherwise hydrophilic structures into lipid bilayer membranes (1-4). The new DNA-nanopores open up the design of entirely new molecular devices for a broad range of applications including sensing, killing of cancer cells, catalysis, and controlled release. The group’s publications on DNA nanopores have been featured on two Angewandte Chemie and a ACS Nano cover and have been highlighted in a Nature Chemistry article (5).

© copyright Howorka Lab 2015 all rights reserved | website design by Matthew Chin

Maintained by Prof Stefan Howorka and Daniel Offenbartl-Stiegert

University College London, Department of Chemistry

 20 Gordon St, London WC1H 0AJ